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Synopsis.
The paper is in three parts of which the first two are mathematical. In the 

first part, a detailed proof is given of a previously announced theorem: an analytic 
function of n four vector variables invariant under the orthochronous Lorentz 
group is an analytic function of their scalar products. The second part is devoted 
to a preliminary study of the domain of analyticity of such invariant analytic 
functions. The third part applies the preceding results to quantum field theory. 
It is shown that the vacuum expectation value ('To, <p (xi) . . . <p (xn) =

(xi, . . . xn) where cp (x) is neutral scalar field, is an analytic function of the 
real variables Xj— 2.7+1, / = 1, . . . n— 1 in a region where all these vectors are 
space-like. It is shown that the values of for all values of its arguments are 
uniquely determined in terms of its values for space-like separations, and that, 
for n = 2, 3, 4, F^ is determined from its values at points where all times are 
equal. These results are applied to prove generalizations of two theorems of R. Haag. 
In effect, these theorems show that, to give different physical predictions, two 
theories of an interacting field which satisfies the canonical commutation relations 
must use inequivalent representations of the commutation relations.

Printed in Denmark. 
Bianco Lunos Bogtrykkeri A/S.



Introduction.

In a preceding paper1, the second-named author showed that the main 
content of a relativistic quantum theory of a scalar field, y(.r), is con­

tained in the vacuum expectation values, F(n), defined by

7/(Zi)(æi> . . . ,rw) = (Wo, 9?(aq) . . . <p(xn) n = 1, 2, . . . ,

where is the vacuum state. It was shown there that, as a consequence 
of the transformation law of the field under space-time translations and 
the absence of negative energy states, the distributions are boundary 
values of analytic functions. The analysis of the structure of the was 
carried further, using a theorem, quoted there without proof, which may 
be stated roughly as follows: an analytic function of n four-vector variables 
invariant under the orthrochronous Lorentz group is an analytic function 
of their scalar products.

The first part of the present paper is devoted to a proof of this theorem. 
Because the techniques introduced in the proof have further useful appli­
cations in quantum field theory, we have given a detailed exposition.

The second part of the paper contains a preliminary study of the set, 
of symmetric n x n complex matrices, Z, defined by Z-k=z,-zk, j, k = 1, 

... li, where zr, ... zn are complex four vectors of the form Zy = £y — ,
with and ?/y real and r/y in the interior of the future light cone (this set of 
zlf . . . zn is called the tube). According to the theorem proved in the first 
part of the paper, the set is a domain of analyticity of the invariant 
analytic function which has the physical as its boundary value when 
all r/y —> 0. It is shown that there are points, zx, ... zn, on the boundary 
of the tube which yield matrices, zt-Zj, of scalar products lying in the interior 
of . From this simple geometrical fact, it follows that an invariant function 
analytic in the tube cannot have an arbitrary invariant distribution as 
boundary value. In fact, it turns out that the boundary value has to be an 
analytic function of the real variables j, k = 1, . . . n in a certain domain

1 *



4 Nr. 5

and that the analytic function is uniquely determined once its values are 
known in certain subdomains of the boundary of the tube.

In the third part of the paper, the results of the preceding sec­
tions are applied to the vacuum expectation values of a scalar field. It is 
shown that . . . ,rZi) is an analytic function of the real variables
(.Tj — xj + 1)■ (xk - xk + 1), j, k = 1,... n - 1 when all .r;- - x-+1 are space-like and lie 
in a certain region. It is further shown that the values of for all values of 
its arguments are uniquely determined in terms of its values for space-like 
separation. For the cases n=2, 3, 4, an even stronger result is obtained: 
F(w) is determined everywhere from its values at points where all the times 
(a’;o)’./= 1- • • • J*  are equal. These results are applied to prove generalizations 
of two theorems of R. Haag, which can be stated roughly as follows: First, 
let there be given two theories of a field which transforms as a scalar under 
the rotations and translations of three space al a fixed time. Suppose that 
the canonical variables of the theories are unitary equivalent at that time 
via a unitary transformation F. Then, the representations of the Euclidean 
group of the two theories are unitary equivalent via V. Second, if the two 
theories just described are, in addition, invariant under the inhomogeneous 
Lorentz group and have no negative energy states and unique vacuum states, 
then the vacuum expectation values (*F 0, ç’C-Tj) . . . are identical
in the two theories for n = l, 2, 3, 4. 'The paper closes with a discussion of 
the physical significance of this generalized Haag’s theorem.

We want to emphasize that the main results of the paper, as far as the 
structure of the F(ra) are concerned (its determination everywhere in terms 
of its values for space-like separated arguments), are valid in both local and 
non-local field theory.



1. An Invariant Analytic Function of Vectors is an Analytic
Function of Scalar Products.

The following theorem was stated without proof in I.

Theorem 1.

Let /'be a complex valued function of n four-vector variables, z, = ,
/= 1, ... 71, where and r/y are real. Suppose /’ is analytic in the tube de­
fined by

oo < < oo, j = 1, . . . n, /z = 0, 1, 2, 3 ;

r/j in the future cone, i. c. r¡2>0, 7/y0>(), j=l,...n

and invariant under the orthochronous homogeneous Lorentz group, L' :

/■(-,, . . . . /l-„) for A e M. (1)

Then, /'is a function of the scalar products zj-z]c,j, k= 1, . . . n. It is analytic 
on the complex variety, , over which the scalar products vary when the 
vectors zx, ... zn vary over the tube.

Outline of the Proof.

If a function is analytic in the tube and satisfies (1) forzle/J, then 
(Lemma 1) it also satisfies (1) when A is an arbitrary complex Lorentz 
transformation, i. e., a matrix A^v p,v = 0, 1, 2, 3, whose elements are complex 
numbers satisfying AA A = 1, which means

<2> 
H = 0

We call the set of such matrices the complex Lorentz group, Furthermore, 
ifdzx,. . . Azn lies outside the future tube, (1) defines a single valued analytic 
continuation of the function f originally given. We shall refer to the set of 
points Azlt . . . Azn, for zls£ and zx, ... zn in the tube, as the extended tube.
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Next, (Lemma 2), we examine the sets of n vectors . zn and Ci, • • . 
which satisfy

= ./, Á- = 1 ... n. (3)

If the il < n matrix of the scalar products has rank three or four, there exists 
a complex Lorentz transformation A such that

= n.

If the rank is two or one, the connection between zt and is more com­
plicated :

■A ~i ~~ A

where the xi, i = 1, . . . n are complex numbers and co is a vector of zero 
length orthogonal to Azt and z= 1, . . . n. Lor points at which the rank 
is three or four, the invariance of an analytic function, /', of n vectors zlf 
. . . zn, clearly implies the single valuedness of / regarded as a function of 
the scalar products (3). For points where the rank is two or one, a further
argument is necessary and is . Thus, /’ is a single valued function
everywhere on the variety, defined by the scalar products ZyT*.,  j, Ar = l, 
.../;. fhe points of 9)in are labeled by the 1/2 n(n + l) scalar products. 2)cw 
can be regarded as an algebraic variety in the space of all complex n x n 
symmetric matrices. In fact, it turns out to be an open subset of the set of 
all complex symmetric matrices of rank <4 and, as such, has dimension 
1 (n = 1), 3 (n = 2), 4 n — 6 (n > 3).

In order to be able to connect the continuity properties of invariant func­
tions of vectors with their corresponding properties regarded as functions 
of scalar products, it is necessary to investigate the connection between 
neighbourhoods of sets of vectors and neighbourhoods of their sets of scalar 
products (Lemma 3). This connection is quite a simple one at points of 

where the rank is three or four, but where it is two or one the situation 
is quite delicate, because the structure of the set of points in the space of 
the vectors which map into a given point of is essentially more complicated. 
Nevertheless, the proof of the continuity of / as a function on can be, 
and is, carried out.

To complete the proof of the theorem, it remains to show that /’is analytic 
on 9)im. For n<4, analyticity is a perfectly straightforward notion because 
sDiw is an open set in complex Euclidean 1/2 n (n + 1) space. However, forn>5, 

is an open set on a 4 7î — 6 dimensional algebraic variety and the notion 
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of analyticity requires some explanation. For a point P of (> 5) for 
which the rank is four, the tangent space to at P has dimension 4 zi —6. 
(Recall that the tangent space to at P is the linear manifold of the space 
of all complex symmetric matrices spanned by the tangent vectors to 
al P.) Sufficiently small neighbourhoods of P on 9Jin can be put in analytic 
one to one correspondence with sufficiently small neighbourhoods in the 
tangent space. Near such points,/’can be regarded as defined in a neighbour­
hood of the origin in a complex (4 n - 6)-dimensional Euclidean space and 
its analyticity defined in the well-known way. The points of n > 5, 
where the rank is less than four are singular in the terminology of algebraic 
geometry 2*.  For them, the tangent vector space has dimension 1/2 n (zi +1 ) 
and neighbourhoods are not locally Euclidean. (The reader may find it helpful 
to think of the example of the light cone. In that case, the point where the 
tips of the past and future cones touch is singular and its neighbourhoods 
are not locally Euclidean. However, it should be borne in mind that 
the actual situation is much more complicated since singular points only 
appear on for n > 5 and in the simplest case, zi = 5, already form a variety 
of 24 (real) dimensions.) Evidently, the above definition of analyticity does 
not apply at such a point. It is not impossible to extend the notion of ana­
lyticity to apply there. In fact, one can do it in a number of different ways. 
However, it can happen that physically important consequences of ordinary 
analyticity do not hold for “generalized analyticity’’. In the following, we 
prove analyticity at all points of for zz<4, analyticity at non-singular 
points for n > 5, and boundedness and continuity at singular points for 
n >5, and that is what is to be understood by “analytic on in the state­
ment of the theorem. It actually is sufficient to guarantee analyticity in the 
sense of Bochner and Martin3.

The proof of the analyticity is completed in four steps. First, differential 
equations arc derived which /’satisfies by virtue of its invariance under I A 
or 2 (Lemma 4). The scalar products z^z,-, / = 1, • • ■ n, considered as 
functions of the vectors z1( . . . zw, satisfy these differential equations. Next, 
it is shown that, in a neighbourhood of a point of at which the scalar 
products span all solutions of the differential equations, /'is expandable in 
a power series of appropriately chosen scalar products (Lemma 5). Lemmas 6 
and 7 then show that at every non-exceptional point the scalar products 
satisfy the conditions of Lemma 5. Finally, to complete the proof, a theorem

* For n < 4, we shall refer to the points P of at which the rank is less than maximum 
as exceptional although, for n < 4, they are not singular in the sense of algebraic geometry. 
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on removable singularities is used to show that /' is analytic even at the 
exceptional points for n <4.

Lemma 1.

Let /(cj, . . . ~M) be analytic in the lube and invariant under the ortho- 
chronous real Lorentz group, iA. Then, / is also invariant under the complex 
Lorentz group £, as long as Azlf . . . Azn is in the tube. When .Ly, . . . Azn 
lies out of the tube, the relation f(Azlt . . ,Azn) = /'(z} . . . zn) defines a 
single valued analytic continuation of /' to the extended tube.

Proof.

Let zlf . . . zn he a fixed point of the tube. Then, for all A in a suitable 
neighbourhood of the identity inV, /kj, . . ,A:n again lies in the tube. In 
some sub-neighbourhood, A7, we can introduce canonical coordinates 
21, . . . Â6 such that4

1. As A runs over A7, Â1, . . . z6 vary over a neighbourhood N' of the 
origin in the complex six-dimensional Euclidean space with (complex) 
coordinates . Ä6.

2. The subset of A7, for which A elA, is the subset of A7' for which the 
Â1, . . . Â6 are real.

3. The matrix elements Aflv (and therefore the vector components
A,lvzv) are analytic functions of Xlt . . . Â6. v0

Since an analytic function of analytic functions is again analytic, f(Azlt
. . . Azn) is an analytic function of . . . À6 in A7'. Furthermore it has the 
property that for real 21, . . . Â6 it is constant. Therefore it is also constant 
for complex Â1, . . . Â6 in A7'5.

Thus, for .1eATc2, equation (1) is satisfied.
This result can he extended immediately in two ways. First, the argument 

applies when A runs over the neighbourhood /SN of the space inversion, 
A = Is. Second, (1) also holds if Azlf . . ■ Azn can he connected to c1,. . . zn 
by a curve

zlf/Li, . . ./l(/)rK; ()</<!; /1(()) = 1; A(1) = A,

lying entirely within the tube and such that it can he covered by a finite 
number of overlapping neighbourhoods : zl (/pA7^ , . . . /1(/ )ATW, lying within 
the tube.

However, this last argument by no means completes the proof of (1), 
because it is not clear that all pairs of points zlt ... zn and Azlt . . . Azn, 
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each of which is in the tube, can be connected l>y a curve of the sort described 
above. (If A is improper, it is Iftzl, . . . Iszn and Azr, . . . Azn, which have 
to be connected by the curve. For simplicity of statement, we consider only 
proper A in the. rest of this proof. The extension to improper A. is trivial). 
We shall give an explicit construction of such a curve al the end of the 
proof of this Lemma. Assuming the construction for the present, we have 
completed the proof of the first statement of the Lemma.

The existence of curves of the above described type is closely connected 
with the possibility of making a single valued analytic continuation of 
/'(zlt . . . zn) to the extended tube. For, starting from a fixed point Zj,. . . .zn 
of the lube, we can extend the analytic function f(Azr, . . . Azn) of A over 
the whole complex Lorentz group, £. (It is the simplest possible analytic 
function on Ü, a constant.) /' is then defined for points Az1, . . . Azn of the 
extended tube. Starting from a different point zt zn of the tube, /‘can 
be defined for the points Mzv . . . Mz'n, MeQ. If it happens that for some 
A and M, Az} = Mzj, / =1, . . .n, the single valuedness of the extension of f 
would be insured by: f(zr, . . . zn) = f(z1, . . . z'n) = f(M~rAzlt . . . M_1Zzw). 
It is just this identity which is guaranteed by our postponed construction 
of curves, and therefore /’ as extended is single valued.

The analyticity of /'in the extended tube at Azlt . . . Azn follows from its 
analyticity at zlt . . . zn in the tube, because the partial derivatives at 
A:lt. . . Azn are expressible in terms of partial derivatives at z1>. . . . zn, e.g., 

df Z. _ 4 - X V d(zi)r
‘ ’ 'n) ,40 d(Ziy dCAz^'

This completes the proof of the second statement of the Lemma.
It remains to construct a curve A(t)zlt . . . A(t)zn; ()<i<l, /l(/)£~, 

beginning at an arbitrary point of the tube zr, . . . zn, ending at the point 
.lz1, . . . Azn of the lube, and lying entirely within the tube, The existence 
of such a curve is obvious if A is a real (orthochronous, proper) Lorentz 
transformation, because every such transformation leaves the lube invariant 
and their set is connected.

For A complex, the required calculations are simpler in a two dimen­
sional matrix formalism in which the four vector z/l is represented by the 
matrix

Then the most general proper complex Lorentz transformation is of the 
form z/l -+■ z'fl, where the four vector z'fl belongs to a matrix, Z', given by

/z° + z3 -1 f~2\ /Z11 Zl2\
1-1 + ,--2

Z° — Z3 / \Z21 Z22/
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z' = a zb*. (5)

Here A and B are 2 x 2 matrices of determinant one. In particular, the most 
general (orthochronous, proper) real Lorentz transformation is of this form
with A = B. This last fact permits us to simplify our problem. Note that (5)
can be written Z'=(AB 1)BZBi, (6)

so that the most general complex Lorentz transformation is of the form of 
a real Lorentz transformation followed by a complex Lorentz transfor­
mation of the special form

It therefore suffices to consider complex Lorentz transformations of this 
special form. The problem can be simplified further by making a suitable 
real Lorentz transformation of the final vectors

Z' I)Z'D*  = (DCir1) 1)ZD*.

By suitable choice of Z), we can bring C into triangular form. In fact, unless 
the proper values of C arc equal, C can be diagonalized. Thus, we can 
restrict our attention to C of the form

and

(8)

(9)

We shall prove that, if Z is in the tube and Z' = CZ is in the tube where C 
is of the form (8) or (9), then C(/)Z is in the tube where 

C(O =
exp [t(o + iO)]

0
0 < t < 1, (

c = exp (q + ¡0), I (10)

(H)

exp [~I(q+ ¡0)]/

respectively. Thus, it will be possible to choose the same curve independent 
of the point Z. (Actually, it will be seen that the case of the minus sign in 
(11) can be excluded.)

The conditions which express in terms of the matrix Z' the fact that the 
vector z'/l= lies in the tube are
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4 (î/)2 = det (Z'- Z'*)  < O, (12)

= - I Im fr(Z') > O, (13)

as can be derived by a simple computation. Our procedure will be to deter­
mine all C and r in (8) and (9) consistent with (12) and (13) for fixed z/l 
in the tube. We shall see that, if C and r are consistent, so are and tx for 
0 < / < 1.

Consider first the case (9). Then, the condition (12) reads

o > -

= |t|2|Z22|2T (sT + sr) + det(Z-Z*),  

where s = Z21Z22-Z22Z12.
'f his inequality can be rewritten in the form

i r T iz22r2 sp-[iz22r4isi2+iz22r2 (-det <z - z*)>j  < o
which describes the interior of a circle in the x plane about the point

As far as the condition (13) is concerned, we note that it is satisfied by 
all points in the interior of the circle if it is satisfied by any one, because 
the vector ?/' must pass through a vector of zero length in order to change 
the sign of í¡'0. With the plus sign in (9), the condition (13) is always satis­
fied and never for the minus sign, as one sees by considering the case r = 0.

Evidently, if the point r is in the interior of the allowed circle, the points 
It, 0 < / < 1 will also be because the origin is in the circle and the circle is 
convex.

Now we turn to the case (8) in which C is diagonal. Here, there are also 
two two-dimensional domains of C’s consistent with condition (12), one of 
which is excluded by (13), as we shall see by a detailed consideration. The 
boundary of the allowed domain is convex in terms of the parameters o 
and 0 defined in (10). This will have to be proved by a detailed computation 
since the boundary is not an elementary curve.

Condition (12) for the case (8) is

(14)
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This condition is satisfied for — £ if ¡I ¡s satisfied for £ and, in particular, 
since by assumption it is satisfied for £ = + 1, it is also satisfied tor £ = - 1. 
For £ = -1, the vector z is not in the tube. Consequently, by the same 
type of continuity argument which we used in connection with equation (9), 
there must be at least two disconnected sets of £ satisfying (14), one of 
which docs not satisfy (13). Another consequence of (13), which we shall 
use in the following, is Zn Z22 + 0.

We divide the remainder of the argument into three parts.

Case 1.
Z|2 > ^21

In this case, we can divide (14) by 2 |Z12 | |Z211, and introduce the new 
variables

ít0 = arg (Zn Z22), £ = exp (ø + zG),

/ = 2 (|Z211| Z12|_1), y = 2G-ff0,

r = — |Z211 11Z121 1 Pe (det Z), /z = |Zn |I ^221 1-^121 1^211 >

(15)

Equation (14) then reads

0 > P = cosh / — (// cos + v). ( 16)

Since P is periodic in y, it suffices to consider (16) in the strip |y| < n, 
-oo</<oo, and show that it defines a convex region there.

There are two conditions on the coefficients [t and v:

IVI < 1 + /t, (17)
and

v + /z > 1. (IS)

The first of these merely says the real part of the determinant of a matrix 
is less in absolute value than the sum of the absolute values of the terms 
which comprise the determinant. The second is a consequence of the fact 
that for £ =1, P< 0 by assumption, and therefore r+/zcos cr0> 1 .

From (17) and (18) it follows that there exists an angle y0, ()<y0<%, 
such that ,v + /.z cos y0 = 1.

For I y I < I yol, v + p cos y> 1 . (19)

The expression (16) for P makes it clear that its behaviour in / for fixed y is: 
if /z cos y + v<l, P> 0 for all /; if /z cos y + v = 1, P = 0 for / = 0 and P> 0 
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for / + (); if /zcosy> + v>l, P = 0 for some Xi = Zi(v?)>9 (and also for 
X = -%i), P<0 for !%!<%!, and P>0 for \%\>Xi-

The discussion of the preceding two paragraphs shows that the set of / 
and ip satisfying P<0 in the strip | ip | < n, — oo</<oo, is connected and 
invariant under reflections in the / = 0 and ip = 0 axes, being the domain: 
-Zi(¥’)<Z<Zi(y)) -yjo<V’<yjO’ where Xi is given by

cosh = pi cos ip + V, Zi > 0 . (20)

To complete the argument we will show the convexity of the function 
as a function of ip.

Differentiating (20) twice and eliminating the first derivative, %[, of / 
with respect to ip, we lind, for | ip | < ip0, (sinh Zi)3Zi= -//(),
where

() = cos (sinh /1)2+/i (sin y)2 cosh (21 )

= (// cos ip + v) (/z + V cos ip) — cos ip, (22)
or

Q = piv (cos ip +1 )2 - [ 1 — (// — r)2] cos ip. (23)

n
We assert that Q>0 for |y’|<^(). For this is an immediate con­

sequence of (21), since both terms on the right hand side of (21) are positive 
there. For 1/2 7i<ip<ipQ, we have cosyi0<0, and from (19), r = 1 + /z|cosy>0|. 
Using this last fact, we see that, when /z > r, // cos ip + v > 0, pi + v cos ip>() and 
— cos ip>() so that (22) immediately implies ()>(). Again, when /z < v, we 
use the form (23), and note that 1—(/z-v)2 = (l-/z + v) (l+/z- v), and 
1+r —/i>0, and 1 + pi - v = // (1 -1 cos y>0|) > 0, so Q>() in this case too.

(’ase II.
~ 9> -^21 * 9 (nr ^12 * 0’ ^21 = 9).

Here we define <r0, q , 0, and ip as in (15), but/z, v, % as follows

Z - - + p - |Zu||Z22|>0, v- -We(detZ). (24)

Then, the basic inequality (1-1) takes the form

() > P = ex — (pi cos ip + r), (25)

and the analogues of the inequalities (17) and (18) are
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(26) 
and

v +/z > O . (27)

II' Z12 + O, Z21 = O, then, in equation (24), replace the definition of / by 
í I Z 9 F \/ = 2 g +/zz I . This case is essentially the same as that for Z12 = 6 

and Z21 # 0 and will not be discussed further.)
A discussion analogous to that in Case I shows that the region of the 

strip |t?| < n, - oo</<oo, as determined by P<0, is given by

- oo<Z<Zi(V;). IV’l<V’o<^>
/z cos ip0 + V = (), and e%1 = /z cos ip + v.

Here, exp (2 %'i = — //(), where Q = fi-\-v cos y>>0, so that the region is
convex.

(ase HI.
^12 = ^21 = •

Here the basic inequality is

0 > P = - (/z cos ip + v),

with pi, ip and v defined as in Case II. /z and v satisfy the same inequalities 
as in Case II, namely (26) and (27), so that there again exists a ip0 satisfying 
pi. cos ip0 + v = 0, ()<ipQ< n, and the region permitted by P<0 is the strip 
IV,l<V’o> ~ °°< Z<o° which is obviously convex.

In each of these three cases we have provecí that the region of/, ip space 
(or what is essentially the same thing since ¡I is obtained by a translation 
and change of scale, q, 0 space) permitted by conditions (12) and (13) is 
convex. Since these regions contain the point @ = 0, 0 = 0, they also con­
tain the points Z^,/0,O</<1, corresponding to the transformations (10) 
and (11); so the proof of Lemma 1 is complete.

Lemma 2.

Let . . . zn and , ■ ■ • be any two sets of n vectors such that

Z¿; = zt-Zj = Ci-Cj, i,j = 1, . . .n. (28)

If the rank of the n x n matrix Z is three or four (or, for n < 2 if Z is 
non-singular), then there exists a complex Lorentz transformation, A, such 
that
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"í = C«, z = 1, . . . n. (29)
If the rank of Z is two or one (and n>2 or n>l, respectively), a Ae S 

satisfying (29) will not exist, in general, but there always exists a A satisfying
+ (30)

where oq are complex numbers and co is a vector of zero length orthogonal 
to Cj and Az(, i = 1, . . . n.

Proof.
We note the known fact that, for a symmetric matrix, the rank deter­

mined from principal minors is the same as the rank determined from all 
minors6. Thus, if the rank of Z is r, there exist r vectors, say z4, ... zr, 
which have non-vanishing Gram determinant

0 + G (zp . . . zr) - det (z^z^, i,j = 1, . . . r.

T his result will be used tacitly many times in the following.
The first step in the proof is to establish the connection between the 

condition, G(zY . . . zr) 4= 0, and the linear independence of the set of vectors 
z4 . . . zr. If G (z4 . . . ~r) 4= 0, then the set z4 . . . zr is linearly independent. 
For a relation r

= ° (31) 
; = i

would imply r
Z - 0 i - 1 . . . r (32)
; = i

and these last equations have a non-trivial solution a1 . . . <xr if and only 
if det (zj-zk) = 0, j, Á’ = 1 . . . r. The converse, that the linear independence 
of the set z1 . . . zr implies G(~i ■ • • ~r) * 0, is not true in general. For 
example, = (0, 1, 0, 0), z2 = (1, 1, 1, 0)

is a pair of linearly independent vectors having zero Gram determinant. 
However, for r = 4, the converse holds, for G(r4 . . . z4) = 0 implies that the 
equations (32) have a non-trivial solution <x1, o2, a3, a4. This, in turn, 

4
implies that there is a vector of the form X with at least one ocj 4= 0, 

i = i
which is orthogonal to all zf. If the z¿ were linearly independent, this last

4
would be impossible, since <XjZ} would then be orthogonal to every vector. 

i = i
Thus, G(z4 . . . z4) = 0 implies that the set z4 . . . z4 is linearly dependent.
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Next, we show that, under certain circumstances, we can coniine our 
attention to the case n < 4. Let zlf . . . zn and Cp . . . Cn he two sets of vectors 
such that any r + 1 element subset of either is linearly dependent, and the 
matrices Zj-zk and k = 1,2,...//, are equal and of rank r. For con­
venience, we may suppose that (^(zp ... zr) + 0. Expand the Zj, j = r + l,...n 
in terms of the /=!,.../-.

(33)

The a7 are expressible in terms of scalar products since they are the solu­
tions of the linear equations 

(34)

fhe equations (34) have a unique solution because ^(zp . . . zr) 4= 0. Thus, 
we see that, if a Lorentz transformation A can be found satisfying (29) or 
(30) for / = 1, . . . r, it will also satisfy them for / = /• +1,...//, provided 
that the rank of z^Zj = is r and there are at most /• linearly independ­
ent zt and tp These last provisos are always satisfied if r = 4 or 3. For 
/• = 4, we have just established the equivalence of G(z4 . . . z4) 4= 0 and 
linear independence of the vectors zlf z2, z3, z4. By the very same argument, 
it cannot happen that the rank of z¿-Zy is three and the number of linearly 
independent z- is four, 'fhe fact that there can be “extra” linearly independ­
ent vectors when the rank aï zi-~j is one or two is the source of the possi­
bility that (30), but not (29), may hold.

Now we will construct a A satisfying (29) under the assumption of the 
preceding paragraph, i. e., that there is at most a linearly independent set 
of /■ z’s and at most a linearly independent set of /■ £’s and the matrix 
z.¿’Zj = Ci'^j has rank r. Our preceding considerations assure us that it suf­
fices to consider the case n < 4. 'flu1 z¿, i = 1, . . . n span an /--dimensional 
linear manifold, J/. For convenience, we let the z1; . . . zr be a linearly inde­
pendent set. Let the corresponding /--dimensional manifold spanned by the 
Ci, /=!,...// be devoted by A’. The orthogonal manifolds .I/1 and TV1 
respectively, are 4 —/• dimensional and the intersections A/fl A/1 and A’il.V1 
contain only the vector zero. A proof of these last statements is obtained as 
follows. Supplement the vectors Zp . . . zr by Zp . . . z4_r and the vectors 
Cp . . . Cr by Cí> ■ • • C4-r so thal the resulting sets are bases for the whole 
four-dimensional space. Then the /- equations
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r 4- r
X^zl'zj) + Xar + l (zizj~) = 0 J = 1> • • • r> 
1=1 1=1

have rank r, so they have 4 —r linearly independent solutions

( Oq, OCg , *̂3  , ^4)-

Because the basis vectors are linearly independent, the vectors
r 4 — r

y_y-lzl+ ¿ al + rzl 
1 = 1 1 = 1

constitute a linearly independent 4 — r element set. Consequently, M1 has 
dimension 4- r. That M D A/1 contains no non-zero vector is equivalent to 
the statement that the equations

¿"az(’C%) = 0 J = (35)
1 = 1

have no non-trivial solution. The analogous statements for vV1 and ATA A'1 
are obtained by replacing by in the above proof.

Notice that the Gram determinant of the entire basis
f /

^1» . . . Zr, r

is the product of the Gram determinants of the sets z1( . . . zr and z4, . . . z4_r 
so that the Gram determinant of z'v . . . z'4_r is non-zero. A similar state­
ment holds for the q'i, • • • £4-,-, and we want to use these facts to show 
that new bases z4, ... z4r and £'\, • • • C4-r for M1 and N1, respectively, can 
be chosen so that

zï‘z" = = ZÏ-c" i,j = l,...4-r. (36)

Consider M1. Since the Gram determinant of the zr, . . . z4_r does not 
vanish, some scalar product of these vectors does not vanish, and, conse­
quently, there is at least one vector of non-zero length in M1. Adjust its 
length to 1 and call it z4 . By induction, using the arguments of this and the 
immediately preceding paragraph, we can construct z4, z% , . . . z4_r or­
thogonal to each other and of length one. An analogous construction holds 
for the C2 , • • • ^4-r- It i‘s evidently crucial for the success of the
construction that at each stage the relevant Gram determinants are non­
zero7.

Now we are in a position to define the A required by (29) as the complex 
linear transformation determined by the equations

Mat. Fys.Medd. Dan.Vid.Selsk. 31. no. 5. 2
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It is therefore the required Lorentz transformation, and the proof of Lemma 2 
is complete for the rank three and four cases.

For rank two and one we must deal with the cases in which the number 
of linearly independent (or Cj) is larger than the rank of the matrix 
z¡-zk. khat we cannot expect to lind a A satisfying (29) in this case is clear 
from the example = (1, 0, 0, 0), z2 = ( 1, 1, i, 0); Ci = (L 0, 0, 0), 
C2 = (l, 0, 0, 0) of vectors satisfying (28) with a matrix of rank one; a A 
certainly cannot carry linearly independent vectors (the z’s) into linearly de­
pendent vectors (the C’s).

Let Z be of rank r = 1, or 2, and let n>r. There is a subset of r vectors 
with non-vanishing Gram determinant. They span a subspace which we 

call MY. It is a subspace of M, the subspace spanned by all i = 1, . . . n, 
whose dimension we denote by m. The corresponding subspaces for the 
vectors £f, we denote by A\ (of dimension r) and A7 (of dimension in'). 
Because and A\ have non-vanishing Gram determinants there is a unique 
decomposition of the vectors zq and

+ 1 I » . . . h, z'iEMy, zïsM^HM

Q = S i Z = 1 > ... n, ATj, C'/f A’/n AT.

Now the rank of the matrices • /’,./ = 1, .. . h must be zero,
since the rank of zi’z’j and ‘ Cj is already r. Furthermore, the sub-
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spaces A// n A/ and A'’/ D N ol’ the 4 — r dimensional spaces Af/, and A^1 can at 
most be one-dimensional since they are isotropic and A// and A^1 have non­
vanishing Grammian7. Thus, z" = co', i = 1, . . . n, /i, • • • complex 
numbers and (co')2 = 0, co'-z¿ = 0, z=l,...7i, and similarly = 
co2 = 0 ■= co-£p i = 1, . . . n. Incidentally, we see that the dimensions m and 
in of M and N are r + 1 at most.

Now we choose an orthonormal basis co¿, i = 1, . . . 4-r for Af/ and 
7/.¿, z = 1, ... 4-r for A^1 so that co' and co lie in the subspaces spanned 
by cols co2 and i/1, t]2 respectively. For r = 2, no construction is required to 
obtain this property of co’s and r/’s. For r =1, we know the construction is 
possible because there has to be at least one vector of lion-zero length ortho­
gonal to co' (or co) and we can take it suitably normalized to be co3 (or i;3). 
Since co' is a linear combination of cox and co2 and of zero length, it must be 
of the form cz(co1±zco2) and by changing the sign of co2, if necessary, we can 
arrange it so that co'= cz(co1 + z’co2). Similarly, co = ¿>(^i+zt/2).

Finally, the Lorentz transformation A required by (30) is the linear 
transformation defined by

= Ci for the r vectors zt and which span Afr and N1
Awi = r¡i z = 1, 2, . . ., 4-r.

That this is indeed a Lorentz transformation follows by an argument like 
that used for the higher ranks. That A satisfies (30) follows from the com- 
putation . . f , 4 • a \Azk Azk+yk(i(Aoj1+iAw2)

= (Ck-ôk oA)+yka (c/i+zc;2)
= Cfc + (n«-(ch+?>;2) À-==i,...n.

Therefore, when the rank r of zi-z.¡ is one or two, there exists a Lorentz trans­
formation, A, such that the Azt and diller by multiples of a fixed vector 
orthogonal to all Azi and i = 1, . . . 7Z, and of length zero. This com­
pletes the proof.

To round out the information provided by Lemma 2, we make three 
additional remarks. First of all, if Z is an arbitrary complex symmetric 
zz X 7i matrix of rank r < 4, it can be written in the form

i,,/ = 1, • • • n, (38)
where Ci, • • ■ Cn are four vectors which span a linear manifold M of dimen­
sion r. This follows immediately from the standard theorem of algebra 
which says that, if Z is a complex symmetric n x 71 matrix of rank r, there 
exists a non-singular n x 71 matrix S such that

2*
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where the one in the upper left hand corner of the matrix indicated in curly 
brackets stands for the r x r unit matrix8. One can then take the components 
C/z as Sbj, zS)2, . . . iSjr followed by 4-r zeros. Equation (39) then reduces 
to (38). At most r of these vectors can be linearly independent and, in fact, 
exactly r are because otherwise Z would have rank less than r.

Our second remark is that, if the point Ci+oqco, • • • Cn + ^-n^ is in the 
tube and co2 = 0 = co-Cp j = 1, . . . n, then co and £) are of the form

co = cz(co1+zco2), where co, and co2 are real and
2 2 iCfJ1 = CO2 = — 1, CO1 • CO2 = 0,

Cj = £) + ßj fl>, where C; ’ = 0 = Cj ‘ ,,/ = 1, . . . n,
and £■,... Cw is a point of the tube.

To prove these statements, we split co into its real and imaginary parts: 
co = q + ir. Then, co2 = 0 implies c/2 = r2 and c/-r = 0 so that q and r 
are either light-like and collinear or space-like and orthogonal. The first 
alternative cannot occur, because the requirement co-C; = 0 would then 
force q and r to be orthogonal to a time-like vector, and the first half of 
(4(1) follows if we choose cox and co2 as q and r normalized to length minus 
one. The second half is easily seen if the real and imaginary parts of Cj 
are expanded in terms of coi and C02 as follows:

Ci - pi^coi-i p^a>2 I CÍ, where Ci ‘ co, = 0 = Cí ‘ ct>9, i 1 , ... zi, I. , , ) ¿ I ^4()^
rlj = I t r/j, where z/'-co, = 0 = >¿'co2, j = 1, . . . n. J

The orthogonality condition (C*  - z/q) • co = 0 then leads directly to crp = o2j) 
and and therefore

C; = - i t/j = £j - i q'j + (ein - z cr{;)) (co, + z co2).

If we write C; = Cj-iq'j, it remains to verify that the point Cp • • • C'n is 
in the tube. Because Ci+a,, co, . . . £m+ara co lies in the tube by assumption,
the squares of the lengths of the imaginary parts of C7- + a; co, / =!,.../? are 
positive :

(41 )

where (ßy + oq) a = ßj + iß'- with ß'} and /?'•' real, and ß. and a defined 
in (40). Clearly, (41) implies z/y2>0. Furthermore, ß? and can be con­
tinuously decreased to zero without (41) losing its validity. Consequently,
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if the imaginary part of Çj+XjM points into the forward cone, so must that 
of so that the point is in the tube.

Our third remark is that, if , / = 1, . . . n and co have the properties 
co = a (cox + zco2), with cox and co2 real and m\ = — 1 = co2 , co1-co2 = 0, =
0 = f°r J =L • • • fz, then there exists a one-parameter family of 
Lorentz transformations A(0), 0 < 0 < oo with the properties /l(0)Cj = 
Cj, j = 1, . . . n and /l(0)co = e_0co. The transformation A(6) is defined as 
the identity on vectors orthogonal to m1 and co2, but

A(6}m, = m, cos z'0 — co, sin z'0
/ . . .n (42)/l(0)co2 = cox sin z’0 + co2cos iO.

With its definition completed by linearity, /l(0) is a Lorentz transformation 
with the required properties.

Two important consequences follow immediately from these remarks. 
The first is that, if a point Ci + ^rco, . . . Çn + xnM with co2 = 0, co-^y = 0, 
j = 1, . . . n lies in the extended tube, then all points of the form ^1+oc'1m, 
. . . Çn + x'nM do also, where oq, . . . cq, are arbitrary complex numbers. Since 

+ oqco, . . . + aMco is in the extended tube, there exists a complex Lorentz
transformation A such that/LCi + aplco, . . . A£n + xhAm is in the tube. Using 
the second remark, we may then write A^j + x'jAm as A^j + (ßj + a'-) Am, where 
A£[, . . . A£'n is a point of the tube, and Am = a (oj1 + z’co2), co2 = — 1 = co| and 
cor-co2 = A£j-m1 = A£'-m2 = 0, J = 1, ... n. Using the third remark, we ob­
tain a family of transformations A (6) such that

A (0) [A^j + x'jA co] = A£'} + e~°(ßj + aj)/lco, / = 1, . . . n.
These equations say that the point A^+x^Am , . . . A£n + xhAm can be 
brought arbitrarily near to the point A£'lf . . . A£'n (which lies in the tube) 
by a complex Lorentz transformation. Therefore, the point A^ + x'^Am, 
. . . A^ + x'hAm and, consequently, the point ^1 + x'1m, . . . Çn + x'nM lie in the 
extended tube.

The second consequence is that an invariant analytic function (satisfying 
the hypotheses of Lemma 1) is necessarily single-valued on For points 
of where the rank of zt-Zj i, j = 1, . . . n is three or min (3, n) the state­
ment follows immediately, because fiz^, . . ■ zn) = f(£i, • • • CM) is a con­
sequence of z^Zj = i,j = 1, ... n, since, by Lemma 2 there exists a 
AeÜ such that Az¡ = j = 1, • • • zz. For z^Zj, i,j = 1, . . . n, of rank 2, 
n>2, or 1, n>l, we know by Lemma 2 that zi-z:j = Ci'Cj implies Az} = 
L,\ Xj M, j = 1, . . . n, so to show the single valuedness of f at such points of 
9Dcw it suffices to show that
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/'(Cl, ... cw) = /’(Cl+ . Cw + aMco). (43)

Furthermore, without loss of generality, we may restrict ourselves to the case 
in which C; and co have the properties co = a(co} i-/co2) with coi and C02 real 
and cox = co2 = — 1, cox • co2 = 0, and £• '= 0 = C; ‘ft)2 > ./ = 1, . . . n. Bv in­
troducing the A(0) defined in our third remark above, we get

/'(Ci, ■■ ■ Cn)~f(Ci ^co, . . . Cw l a„co)
- /'(A(0)^, . . . ,1(O)CM)-/'(J(ö)Ci f ax/l(0)co, . . ./1(O)C„+ a„zl(9)co)

= /'(Ci, • • • CM)-/'(Ci + a1e“°co, . . . Cw + awe“%).

From the continuity of f al . . . £ra, >ve see that the last expression vanishes 
in the limit as 0 —> co, which proves (43).

Now we turn Io the connection between the topology of the vectors 
;x, . . . and the topology on 9J(W.

Lemma 3.
Let Z be an n x n complex symmetric matrix of rank r, 1 < r < 4 and co 

an arbitrary real positive number. Then there exists a set of n four vectors 
C], . . . zn and a neighbourhood of them consisting of the four-vectors rx + vx, 
• • • ~n + vn with

I v/1 I < co j = 1, . . . h ; // = 0, 1, 2 , 3 (44)

such that Ztj =- zt'ZJt i,j = 1, . . . n and the matrices, Z-;, defined by

7új = ("i + vi) • ("j + > '•= 1 • • • /h (45)

cover a neighbourhood of Z in the set of complex symmetric matrices of rank 
< 4, i.e., for suitably chosen z; > 0, every complex symmetric matrix Z' of 
rank < 4 which satisfies

is of the form (45) with satisfying (44).

Proof.

The direct determination of the vectors vt, z = 1, . . . n satisfying (45) 
would be somewhat involved, so we make a series of transformations to 
reduce the problem to a simpler one.

We know from the first remark following Lemma 2 that the matrix Z 
may be written as a matrix of scalar products: Zi}- = zt’Zj, i, j = 1, ... n,
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where, if Z has rank r, the vectors Zpj = 1, . . . n span a linear manifold of 
dimension r. That being the case, there exists an r-element linearly independ­
ent subset of the n vectors which may as well, for convenience, be taken 
as Zj, ... zr. A new set of z’s, which we denote by Zj, j = 1, ... n, is de­
fined by ,

~y = j = 1, . . . r
r

o = = z. - > cc.kzk, j = r + 1, ... n.
k = 1

This linear transformation from z’s to z'’s has determinant 1 and is there­
fore non-singular. Subsequent to this transformation, we carry out a linear 
transformation on the subspace .W which normalizes and orthogonalizes the 
z'j, j = 1, . . . r. The product of these two transformations is given by a 
matrix A which has the property

Now, since A is non-singular, it maps neighbourhoods of z1, . . . zn into neigh- 
n n

bourhoods of X" yL- > . . . An?.z7 and neighbourhoods of Z into neigh- 
y = i . j = i

bourhoods of AZAT in an invertible manner. Thus, it suffices Io prove 
Lemma 3, in the case that the first r of the vectors Zj arc orthonormal 
and the rest are zero.

This first simplification of the problem uses a transformation, A, which 
depends only on the Zj, but not on which point in the neighbourhood of the 
Zj is under consideration. The second transformation we make will be 
different for each Z', and makes the first r of the vectors Zj + Vj orthogonal 
to the rest.

Define a new set of by the equations

i,'. = v. / = 1, ... r,
r

v'i = vj - ¿ ßjk(zk + vk) ./ = /•+ L ... n, 
fc = i

where the numbers ßjk, j = r + 1, ... n, k = \, ... r, are determined from 
the condition

vj'(zk + vk) = °’ J = . . . a, À = 1, . . . r. (46)

An elementary calculation yields

ßjl = Zjk(Z ^kl
k=l

j = r + 1, ... a, I = 1, ... r,
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where the indicated matrix inverse means the inverse of the r x ?• matrix 
ZL, j, k = 1, . . . r. The simplification of the problem achieved in the pre­
ceding paragraph enables us to write Z' = Z + B where Zjfc = ôjk,j, k = 1,... r, 
Zjk = 0, ,/. k > r. When the matrix elements of B satisfy | Bjk | < >/, j, k = 
and )/ is sufficiently small, the estimates |Z'-fc| <?/; _/ = r I- 1, . . . /i, Å-= 1,... r, 
and I <?/ 0 — r k, I = 1, . . . r, hold, so that the trans­
formation from the t>’s to the i/’s has an inverse and carries small neighbour­
hoods of the origin in u space into small neighborhoods in v' space, and vice 
versa. Thus the problem has been reduced to that of finding v[, . . . vn 
satisfying

/(zj I- v'j) • (zk 4- n¿) I (c; 4 i/j) • i>k\ I 1 I o \ / 7ii I o i
' /’j-(-*  + 't) I Dj-i’k I ' 0 I 0 I \ 0 |B2/’

where the dividing line in the matrix is at the /•t/l row and column and

./- k = h • • • whilc

= Bjk ~ )jl )mk .h k = r + 1 > . . .11.
I, m = 1

When //, /, k = r I -1, . . . n we have | (B2 )jk | < ?/ (1 -r//)_1.

The simple expedient of requiring v'k, k = 1, . . . r to have vanishing 
components beyond the rth and v'k, k = r+\, ... n, vanishing components 
before the (r+l)st in a basis in which the vectors zk, k = 1,2,... r, are 
the first r coordinate axes guarantees the orthogonality relations (46). flic 
problem of satisfying the upper left hand corner of the relation (47) then 
reads in r x /• matrix form

(1 4-0(1 +u')T = 1 + Br,

w here 1 + v' is the r x r matrix whose kth row is composed of the components 
of zk + vk. By making the special choice of the components of vk, Á- = 1, 
2 . . . r, which makes 1 + v' symmetric, we are led to the solution

1 +v' = [1

the right hand side being defined by its power series about the matrix Bv = (). 
Phis series converges for sufficiently small r/ and leads to components of v' 

w hich satisfy l(v')-1“ | < 7/(1 — rr/)“1, / = 1, . . . r.
To be sure that the lower right hand corner problem has a solution in 

terms of vectors with only 4 — r components, we have to be sure that the rank 
of B2 is < 4 - r. This follows immediately by an argument which we used
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several times in the proof of Lemma 2. The right hand side of (47) is a 
matrix of rank < 4. The r x r matrix 1 4 is of rank r, therefore B2 is of 
rank < 4-r. (Compute the determinant of all principal minors of the right 
hand side of (47), which have 1 + B{ in their upper left hand corner. They 
vanish if they have more than four rowsand columns.) Then, by the theorem 
quoted in (39), we know v'k, k = r + 1, . . . n, exist such that = (B2)kl, 
k, I = r + Í, . . . n. Of course, there is a variety of sets of vectors vk, k = 
r+1, ... n satisfying this last relation. We have to be sure that sets can be 
chosen so that their components are uniformly small when the matrix 
elements of B2 are small. It can be shown that the v'k can always be chosen 
so that*  J ,

* The inequality (48) can be proved by going through the classical induction proof of (39) 
estimating the size of each term. We are indebted to V. Bargmann for pointing out (48), as well 
as showing us a version of the proof of this Lemma which we have followed rather closely.

|^<8* 1<4“O~1][suP|(B2)J]=. (48)
i.j

Collecting the estimates of the v'k and |(^2)¿j I we sec that. when r/ is suf­
ficiently small, components of the vt satisfying (45) can always be chosen 
so as to satisfy (44).

Lemmas 1 and 2 enabled us to prove that an invariant analytic function, 
(satisfying the hypotheses of the theorem) is necessarily a single-valued 

function on The continuity of /’ on ÏU(,; is an immediate consequence
of Lemma 3, because it demonstrates that small neighbourhoods of any 
point, P, on can have pre-images in the space of vectors which are small 
neighbourhoods of a pre-image of P.

We now turn to the proof of the analyticity of / on

Lemina 4.

If f(zx, . . . zn) is a function of the vector variables zr, ... zn analytic 
in the tube (extended tube) and invariant under transformations of iA, 
then the following equations are satisfied at every point of the tube (ex­
tended tube).

VÍ df\
-S^dzj1’ ^’dz^l 0. (49)

Proof.
Let /1(a), — oo<«<oo, be any one parameter subgroup of real Lorentz 

transformations, and zlt . . . zn a point of the tube (extended tube). Dif­
ferentiating the identity
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/■(4(a) Cp . . . 4(a)zw) - /'(yp . . . -„)

with respect lo a, we obtain

•If
da

Al a = 0, we have

___ df
d(/l(a)r/)/z da

d(/l(a)z;)/z 
da a

where Â/Zr is a real 4x4 matrix satisfying

= - Â /z A V Av »

and defining the one parameter subgroup. Hence

df
~i dzf

(50)

(51)

Now, any real 4x4 matrix satisfying (50) generates a one parameter sub­
group, so we may take Â to have zero matrix elements except for a fixed 
pair and then (51) reduces to (49) and the Lemma is proved.

Considered for fixed zk, the equations (49) are a set of linear equations 
df .

in the 4 n unknowns fl, j = 1, . . . n, // = 0, 1, 2, 3. I here are at most 6 

independent equations. The derivatives of any invariant function must 
satisfy this set of equations at each point of the tube (extended tube). Of 
course, the coefficient matrix of the equations varies from point to point.

Lemma 5.

If al a point, . . . zn, of the extended tube, the number of linearly 
independent solutions of the equations (49) is q and this o dimensional linear 
manifold of solutions is spanned by the solutions which come from q scalar 
products, then any invariant analytic function, f, may be represented in a 
neighbourhood of zx, . . . zn of the extended tube as a convergent power 
series in the q scalar products, i.e., f is an analytic function of the o scalar 
products at rx, . . . zn.

Proof.

In the customary nomenclature, a set of analytic functions /(z) i' = 1, 
. . . m < 4 n of the four-vector variables zx, . . . zn is functionally independent
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al the point zlf zn if the Jacobian matrix
dfd) 
dz^ i = 1, . . . ni labels rows;

j = 1, . . . n, n = 0, 1, 2, <3 label columns) has rank in al zlt . . . zn. In other 
words, the m rows of the Jacobian matrix regarded as 4 n component 
vectors with components labeled by / and /i are linearly independent. Since 
functional independence at a point is equivalent to the requirement that the 
determinant of some in x in minor of the Jacobian matrix be different from 
zero, functional independence at a point implies functional independence 
in some neighbourhood of the point.

In this terminology, the hypothesis of the Lemma is that g functionally 
independent scalar products exist. We shall denote these scalar products 
by /'(î), i = 1, . . . Q. Since the Jacobian matrix has rank p, there exists a q 
element subset, T, of the 4 n variables z/1, j = 1, .../?,// = 0, 1,2, <3, such 
that the determinant of the square matrix

is non-zero.
Then, by the implicit function theorem for several complex variables,*  

the z/eT are analytic functions of/’(i) i = 1, . . . o in a neighbourhood of 
/■"> (zp . . . z„) and '

/•(j,, -j (/■<», .../-W, Z,«1».

where g is analytic in the variables /'*'*,  i = 1, . . . o and /i(?), / = 1, . . . 4 /i-p 
in a neighbourhood of

/“’(m. . . . . /-“’(Zp . . . z„), /.“’(Zp . . . . /¡<4”-«(zp . . .

The variables 7?<J) are the zk/l which are not in T. The variables

i = !,•••{? and 7i0>, j = 1, . . . 4 n - 

are obviously functionally independent in a neighbourhood of zx, . . . zn.
The derivatives of /' can now be expressed in terms of the derivatives

of i/ as follows:

dz^ j

e dg dfW dg dh™ 
— d fW dT/1 + A, dh™ dz>1 • 
i=i' j fc=i j

However, according to the hypothesis of the Lemma, at the point

See B and M, p. 39, theorem 9.
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Hence,

1
xi ßk/i ■

i y

dy dld^ 
' dh^ dz!1

dfW d 7j(*>
Bul regarded as vectors with 4 ii components, i = 1■ Q and , 

)' ~7
i= 1, . . . 4 ii — Q are linearly independent. (That is what the functional 
independence of the />(l) and 7j(î) means.) Therefore, their coefficients in this 
equation must vanish. In particular, 

so y is independent of the 7i(î) and the Lemma is proved.

Lemma G.
Let TV be the maximum number of linearly independent vectors con­

tained in the set of 4-vectors . . . zn, then the set of six linear equations

¿ A;,-¥,„)-<> /t,r = 0,1, 2, 3/«r (52)
7-1

for the 4 n quantities /= 1,. ..?/,/( = 0, 1, 2, 3 has the rank

N 1 o > 3
rank 3 5 6

Proof.
If 77 is a non-singular linear transformation of four dimensional space, 

it is clear that the set of equations (52) has the same rank as the set

Y [(7?ry) (RX})V - (Rz^RX^] = 0 , = 0,1,2, 3
7 = 1

for the 4 n quantities (RX^. Then, with a suitable choice of R, the last 
(4 —TV) components of vectors Rz¿, j = 1, . . . n can be made to vanish. 
Having reduced the problem to this simplified form, we drop the R and 
assume the last 4 - TV of the components of the Z; vanish.

To find the number of linearly independent equations (52), consider a 
possible linear dependence among them
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3

/zj = o y = i /l <v
for all Xt k, i. e.,

3 3
¿’ a^zlu - ¿ a™zlv = 0, Z = 1, . . . n, x = 0, 1, 2, 3

/Z = o ( " V = o LVp,<k k <v
or

Az, = O, Z = 1, . . . n,
where we have written

-A^ = A^’ = a'iv, /i<v, = 0, /z, v = 0, 1, 2, 3.

Thus, the rank of the equations (52) is six minus the number of linearly 
independent skew symmetric matrices, A such that Azt = 11, z = 1,2,.../?.

/0 0 \ ,The most general A has the form I j where A is an arbitrary anti­

symmetric (4 - N) X (4 - N) matrix. The numbers tabulated in the Lemma 
are just six minus the number of linearly independent A'.

Lemina 7.
Let zv . . . zn be a set of n four-vectors of which some four-element 

subset (or n element subset if n<4) is linearly independent. Then, the num­
ber of linearly independent solutions of equations (52) which arise from 
scalar products of the four vectors according to

is 4n-6 if n >3, is 3 if /? = 2, and 1 if n = 1.

Proof.
It is clear that, for n>3, not more than 4 n - (j linearly independent 

solutions of equations (52) can be obtained from scalar products because 
there are at most 4 n - 6 functionally independent scalar products. 
This follows immediately from equation (34), which expresses zk'Zl, k, Z > 5 
in terms of z^Zj, where z = 1,2,.../?,/ = 1, 2, 3, 4. Of these 4/?, 6, namely 
Zf'Zp i>j, i = 1, 2, 3, 4 are expressible in terms of the rest. For n = 3, 2, 1 
it is obvious that there are respectively 6, 3 and 1 independent scalar pro­
ducts at most and therefore 6, 3, and 1 linearly independent solutions of 
(52) at most.
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To show that these upper limits on the number of solutions are actually 
realized under the hypothesis of the Lemma, we proceed as follows.

Denote a vector in the space of solutions of (52) by (£x, . . . £„) where 
the £) are four-dimensional vectors. This notation is chosen so that an 

. P . , . / d r d F \ d I'invariant analytic function L generates a solution r- where xdzn) dzj
dF

stands for the four-dimensional vector with components, —, In this nota-

of (52) which comes from the scalar product z.¡‘Zk is

(0, . . . 0, zk, 0, . . . 0, Z.J, 0, . . . 0), (53)
>

place
k^ place

(0, . . . (), 2 0, . . . 0), (54)
place

tion, the solution

and from z'z

Now, for convenience, let the first four z, (or first n if n< 4) be the linearly 
independent set whose existence is assumed in the Lemma. Then we can 
write

By convention, we will accept (54) as the value of (53) for / = k.
The most general solution of (52) arising from scalar products is of tin*

form n
(c,,... c„) - y

J ,fc = 
Here, evidently

('jk (0, ... 0, zk, 0, . . . 0, Zj, 0, . . . 0).

n
= 21 (ajk + (,kj) :k’

k = 1
so that the antisymmetric part of the matrix aik. does not contribute and
(ijk may as well be chosen symmetric.

~k = >. kklz,, k = K ... n, (5ñ)
i = i

where m = min (4,//) and b is an n m matrix of rank m. Substituting (55) 
into the expression for the solution vector we see that, in the basis for 
solution vectors provided by (cZi, zh, . . . zllt), lj \. in, / 1, . . . n , 
the most general solution arising from scalar products is of the form of an 
n X m matrix AH, where A is an arbitrary symmetric n x n matrix and is 
a fixed n x m matrix of rank in.

To count the number of linearly independent AH simply, write H as the 
product of a non-singular n x n matrix IF and the n x in matrix whose first 
in rows form the unit matrix and whose last n - in are zero:
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This is always possible because B is of rank in. The number of linearly 
independent matrices AB is the same as the number of linearly independent 
matrices

(B')JAB'

i.e.,  the same as the number of linearly independent matrices of the form

where S2 is an arbitrary (n —m) x m matrix and Nj is an arbitrary symmetric 
in x in matrix. There are obviously in(n — m) +1 in (in + 1 ) linearly independ­
ent of these, which immediately yields the statement of the Lemma.

Completion of the proof.

Lemmas 1 to 7 establish the single valuedness, boundedness, and con­
tinuity of f everywhere on and its analyticity on al every non- 
exceptional point, i.e., every point where the matrix zi*z i, i,j = 1, 2 ... n, 
has the maximum possible rank, min (4,n). To complete the proof of the 
theorem, we want to show that in those cases where the set of exceptional 
points is not singular in the sense of algebraic geometry, viz. n = 1, 2, 3, 4, 
/' is also analytic there. For this purpose, we use a standard theorem on 
removable singularities which asserts*:  Let /'be a function which is analytic 
in a neighbourhood of a point, P, with the possible exception of a variety 
passing through P, the variety being defined as the set of zeros of a function 
analytic in the neighbourhood of P. Suppose that /’ is continuous or merely 
bounded throughout the neighbourhood of P. Then /’ is analytic throughout 
the neighbourhood of P. In our case, the variety is obtained by setting the 
analytic function del (zy-zJfc) = 0. The required analyticity and continuity 
of /'having been established by our Lemmas 1—7, the proof of the theorem 
is complete.

2. The varieties
As we have seen in Lemma 3, every rank < 4 complex symmetric matrix 

is a matrix of scalar products of four vectors, so that is a subset of the 
set of all complex symmetric n x n matrices of rank < 4. The same Lemma

* B and M, p. 173, theorem 5. 
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shows thal 5Dirø is an open subset. It is clearly connected because il is the 
continuous image of a connected set, the tube. Il is also simply connected 
by virtue of Lemma 3, although we shall forgo a formal proof. (The idea 
is, given a closed curve on ïl)tM which has to be shrunk to a point, to construct 
a closed curve of vectors in the tube whose image in is the given curve. 
Then, because the tube is simply connected, the curve of vectors can be 
shrunk to a point which implies that their image can be shrunk to a point.) 
Not every rank < 4 complex symmetric n x n matrix, Z, is in 3RW, for example 
if Z has real positive diagonal elements it is not in We shall not attempt 
a quantitative characterization of at this stage, but only remark that it 
need not be the natural domain of analyticity for the analytic functions 
which occur in Held theory. For example, the first named author showed in 
his thesis9 that the local commutativity conditions, 1 equation (11), always 
make it possible to extend the analytic function determined by the three­
fold vacuum expectation value (¥z() (^(.rj) <p(.x’2) (^(aq) ’Fq) beyond S0i2. On the 
other hand, it is clear (hat such functions cannot in general be extended to 
all complex symmetric rank <4,nx/i matrices because they must have 
branch lines in order to conform with physical requirements. (See, for 
example, the discussion of F(2)(z22) in I, Section 4.)

fhe restriction to n x n matrices of rank < 4 is of (“nurse no restriction 
al all for n < 4 so the for n < 4 are open sets in Euclidean 1/2 n(n-f 1 ) 
space. For n < 5 the restriction to rank < 4 on an n ■ n matrix Zi} can be

for each pair of live element subsets zx, . . . i5 and q, . . . /5 of 1,2,... n. 
The tangent spaces of are determined by taking the differential of the 
left hand side of (56). The result is a set of linear equations for the <IZ¡j 
whose coefficients are determinants of 4x4 minors of Z. Al any point of 
9Jin where all determinants of 4x4 principal minors of Z vanish, these 
equations are satisfied for any choice of dZi}. Consequently, al such a sin­
gular ¡mint, the tangent space is 1/2 n (n + 1 ) dimensional. On the other hand, 
as we learned in Lemma 7, the dimension at a non-singular point is 4 n - 6.

Now we want to study the relation of the points of sJJiw to those of the form 
real, i,j = 1, . . . n. We will refer to such Z as physical because 

the arguments of the physically given vacuum expectation values are real 
vectors. We remark that every physical point Z is either in the interior of 

or on its boundary, because is the limit of (£? - zxq)-(^ - z rq) as 
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the tf s approach zero. No physical point Z can be in the interior of if 
any of the vectors £•, j = 1, 2 , . . ., n (of which Z is the set of scalar products) 
is light-like or time-like. To see this, consider a general point —Z??;, 
/' = 1,2,.../? of the tube. The corresponding point of is given by

^jk ~ ^k~Vj Vk ^k)‘

If Z' is to be real, it is necessary that each of the be space-like since it 
is orthogonal to a vector inside the light cone. But then the diagonal elements 
of Z', = 1, ... /?, are negative so that Z' can be a physical point
Z, Z-k = ^-^k, j,x = 1, . . . n only if the vectors satisfy = ¿fj - rfi. On 
the other hand, as we now will show, some physical points with space-like 

do lie in the interior of 9Jin. Since this is a fact of considerable physical 
significance, and the geometrical relationships are rather involved, it is 
worth introducing some notation to describe the situation. We denote by 
Sn the set of all physical points, Z, which arise from space like vectors, 
i.e. of the form Zjk = ^j‘^k, j,k = \, ... n with real and space-like. The 
subset of Sn which arises from £;,./ = 1, . . . n, lying in a space-like three 
dimensional linear manifold, we will denote by 7’w. We will also call Tn 
the equal time-manifold since it is the set of matrices whose elements can 
be taken as scalar products of vectors arising from vectors = ,r;. — ao1; 
/ = 1, . . . /?, where the Xj have equal first components.

We first prove that a subset of Tn lies in the interior of and then 
pass to neighbourhoods of that subset. Consider the vectors j = 1,
... n, where = oqr/, is a real positive number, r/ is a real unit vector 
in the direction of the time axis, and £'-,/ = 1, . . . n are real vectors with 
zero component in the time direction and in one space direction, sav the 
direction of the third axis. Then,

Z' = - ZÎ/0 • - ir¡k) = ■ £k - <x}ock = • £k ,

where is defined as £• plus a vector along the third axis with component a.-. 
The vectors £• evidently all have zero time components, so that Z is 
in Tn. Although the point ... £n does not lie in the tube, it must, by 
Lemmas 2 and 3, lie in the extended tube. Furthermore, by suitable choice 
of the components of j = 1, . . . n, it can be arranged that Z' has rank 
three. By Lemma 3, it then follows that vectors lying in neighbourhoods of 

have scalar products which cover full neighbourhoods of Z' in Wln. Thus, 
the fact that the particular points Z' chosen above lie in $)ln implies that the 
physical points which arise from all . . . l-n lying in a suitably small 

Mat.Fys.Medd.Dan.Vid.Selsk. 31, no. 5. 3 
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neighbourhood of the chosen £4, ... fn also lie in This shows that Tn A 7)1 n . 
and SwAÏDtw have the same dimension as Tn and Sn, respectively.

Not all of Sn lies in but we will not attempt to prove this now nor 
to characterize those points of Sn which lie on the boundary of We 
content ourselves here with the simplest consequences of the preceding 
results on Tn and Sn. The set SbA9Tw has been shown to be of the same 
dimension as Sn and to contain, for suitably chosen e, all real symmetric 
matrices Z' of rank < 4 satisfying \Z'jk - • fk | < e . This set is a real environ­
ment*  for an analytic function defined on an analytic function f is 
uniquely determined all over 9)t'M if its values are given on this set. We shall 
see in the next section that this result has important physical consequences.

fhe points of Tn are always of rank < 3 so that for n > 5, 7’„A9Jin lies 
in the singular subset of where the ordinary definition of analyticity 
fails. The set 74A3)i4 is of (real) dimension nine while S4 A S)i4 is of dimension 
ten so that 7’} A 9014 is not a real environment. On the other hand, 7\ A 2)^, 
7’2 A ÏU<2 an(I 7'3 A ÍÜÍ3 have the same dimension as S^AÍJ^, S2A9DÎ2 and 
N3A9J73, so that they form real environments for analytic functions on DJij, 
9Ji2, and 9J13, respectively.

3. Physical Applications.
Some physical applications of the theorem of Section 1 were already 

discussed in I (See, for example, the formulation of local commutativity 
given in 1 equation (11).) They arise, like those to be discussed below, 
when the theorem is applied to the invariant analytic function

7 , ¿2 , . . . A.w_ J

whose boundary value, as all / = 1, 2, . . . 11, is the vacuum expect-
atlOn value - (Wo, -X.r,) . . . , !?,).

Here, in a notation somewhat different from I, we have written

"j = rlj an(1 = xj ~ XJ + 1 ./ = 1, ■ • • « ~ 1 •

The first consequence of the theorem is that  j ) is (in (ma­
il/ tic function of the real variables Z{j = i,j = 1, . . . n —1 in an open 
subset of the set where all are space-like, i.e. in the notation of the preceding 
section, as long as Z belongs to a certain open subset o/'Sn_4 A j. 1’his con-

* See 13 and M, pp. 33-34, for the definition of a real environment in Euclidean space. The 
same definition works here because a neighbourhood of a non-singular point in sDiw is essentially 
a Euclidean neighbourhood.
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elusion follows immediately from the analysis which showed that Sn_x 0 
is a real environment in (Recall that SDiw is the set of all complex
symmetric matrices of the form cq-cq, i,j = 1, 2, . . . n, with in the tube. 
Of course, on for n > 5, the ordinary definition of analyticity has no 
meaning at the exceptional points where the rank of is less than 4. See 
the discussion in the outline of the proof in Section 1.

Furthermore, the vacuum expectation value

(^o> ■ ■ ■ (Kxn) ^o)
is uniquely determined from its values for space-like separated xq, . . . xn. It 
is possible to regal’d this result as a quantitative formulation of the intuitive 
feeling that in a Lorentz invariant theory the equivalence of descriptions in 
different Lorentz frames should somehow restrict the possible correlations 
between the values of physical quantities at different points in space time.

For F(2)(^1), F(3)(^, £2), and F(4)(|q, £2, £3) an even more striking result

( ^0 ’ 71Gri) (P(^’2) ^0)’ (^0 > ? (* ri) 7(^2) (*̂3)  ^0)’
urn/ (7%, 99(xq>(x2) 99(x3) (p(x4) V70)
are uniquely determined from their values al equal times, i.e., in the notation 
of the preceding section from their values for Zi} = with ZeT}, T2,T3, 
respectively. We want to emphasize that alt three of these results hold in 
both local and non-local field theory.

The most important application of the preceding remarks we know of 
is to the proof of the following theorems which are extensions of results 
stated by R. Haag10.

Theorem (Generalized Haag’s Theorem First Part).
Let two theories (distinguished by a subscript / = 1, 2) of a neutral 

scalar field be given whose canonical variables are related at time I by a 
unitary transformation, V:

Uj (o’, /?) qpj (x, U} (ci, R) 1 ~ (p^Rx + a, t) j= 1, 2 (57)

Uj (fa, R) t) Uf a\ R) 1 = ( /ix + tF, t) j = 1, 2. (58)

(Transformation law of field variable and canonical conjugate under 
Euclidean transformation.)

[^•(x, /), tp}(fy, /)] = z_1ô(x-y) j =1,2
(59)

[%;(x, /), 71/y, /)j = 0, [99/x, /), (p}\fy, /)] = 0
(Commutation Relations)

3*
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?2(æ> O = vVi (æ, O v 1 > (60)

Here (a,R) represents the Euclidean transformation: rotate by /? and trans­
late by a; the unitary transformations, ih(cz, /?), give the corresponding 
transformations of the states in the two theories.

Then /-> \ /-> x
U2[a, R) = R) r 4. (61 )

If each of the theories contains a unique normalizable state lRtíj, ./ =1,2, 
invariant under Euclidean transformation:

( j(í J-1,2,
then

e ^02 = ^oi >

where c is a constant of absolute value 1.

Proof.

From (57), (58), and (60) we can easily derive that the operators

R^'V^U^a, RjV (62)

commute with «p/ir, /) and tcJ.c, /) for all T. Because the and .iq form 
an irreducible set*  of operators, (62) must be a constant multiple of the 
identity operator: co (jt, R) 1 and

* That ^(T, 0 and /) form an irreducible set is what we
that the theory is a theory of the scalar field g^. This assumption is made for simplicity. In a 
theory in which the field <p1 interacted with a spinor held, one would only have to introduce 
the hypothesis that q>x, .t,, y, ÿ>, form an irreducible set, together with the appropriate exten­
sion of (57) . . . (61), to obtain an analogous theorem.

U2 (a, R) = (o[a, R) VU^'a, Iï)V~l. (63)

To prove the second

mean by our assumption

Thus, by the uniqueness of */ y02, Il’¥/()] is a multiple, 
is unitary, | c | = 1.

From (63), it follows that (cT, /?) —> co(a, R] is a continuous unitary one 
dimensional representation of the Euclidean group and therefore co! a, 7?) = l.u 
This completes the proof of the first half of the theorem. 
half- note that 17,(7, R] - w,„
and (63) imply

L'2(a, «) V<P01 = V

c, of lP02. Since V
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It should be noticed that only the properties of the fields and states 
under Euclidean transformation at time t have been used in the proof of 
the theorem. To one accustomed to the formalism of non-relativistic quantum 
mechanics, the conclusion of the theorem is in no way surprising; V always 
exists in such theories. Of course, there, Vis a function of time, and physic­
ally different theories will give a different time dependence for V. The sur­
prise comes when, following Haag, one combines the preceding assump­
tions with those of relativistic invariance.

Theorem (Generalized Haag’s Theorem Part 11).
Let two theories of a neutral scalar Held be given satisfying the hypo­

theses of the preceding theorem. Let the theories be invariant under inhomo­
geneous Lorentz transformations (<z,/l) and suppose the fields transform as

f 7(ri,/l)ç;;(.r) ¿^(n.zl)"1 = ^-(Zl.r + u) j-1,2. (64)

Suppose further that the slates are invariant under inhomogeneous 
Lorentz transformation

i/y(a,Zl)¥>0/=^. j = 1,2, (65)

and that no states of negative energy exist.
Then the first four vacuum expectation values are equal in the two 

theories.
oi » 7'i (,Ti) • • • T’i Grn) oi) = ( ^02 ’ T’aGri) • • • 7’2(æn) ^02) (®6)

Proof.
From the preceding theorem we have for equal times = x% = .. = xQn :

C^01> T’i(æi) • • • T’lCæ«) ^01) = (^’^Ol’^T’lCæl)^............ V(PÁxn)v lv,//oi)

= (^02 > <P2(æi) • • • 7’2 Grn) ^oa)-

Thus, all vacuum expectation values are equal for equal times in the two 
theories. For 11 =1, 2, 3, 4, equality for all times x° 4= æ® 4= ... 4= .r® fol­
lows from equality for equal times by the argument presented earlier in 
this section. This completes the proof. The hypotheses about the absence 
of negative energy states and the existence of the vacuum are necessary in 
order that the vacuum expectation values be boundary values of analytic 
functions to which our previous analysis applies.

It should be noticed that we have not made the assumption that the two 
theories transform according to equivalent representations of the inhomo- 
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geneous Lorentz group; our hypotheses do not exelude a priori the possi­
bility that the two theories have different bound stales, for example. Further, 
we have not assumed any particular transformation law for the operators % 
under Lorentz transformations and time translations. Only the behaviour of 
ítLt, for one particular lime under Euclidean transformations is needed.

The uniqueness of the vacuum state is crucial to the argument. If it 
were possible to form normalizable states of zero three-momentum from 
states of mass greater than zero, the hypothesis of a unique normalizable 
state of zero three-momentum would be unnatural and the second theorem 
physically trivial. V could then carry V701 into a superposition of and 
those other stales of zero three-momentum. However, Wigner’s analysis of 
the unitary representations of the inhomogeneous Lorentz group12 shows 
that states can never be normalizable which are superpositions of states of 
mass greater than zero and have zero three-momentum, ami Haag’s theorem 
is very far from physically trivial.

As a particular case one can take the field çq to be a free field satisfying 

(□ + m2) ç j(.r) = 0, [çqf.r), 92/y)] = z_1 Zl (.r - y).

Then we conclude: no theory of interaction exists in which the ordinary 
représentai ion of the annihilation and creation operators is used and the first 
four vacuum expectation values differ from their free field values. If relativistic 
theories of interaction exist with vacuum expectation values, F(w), different 
from the free field values for n = 1, 2, d, either they must use other repre­
sentations of the canonical commutation relations or they (to not satisfy the 
canonical commutation relations al all. (This is essentially Haag’s con­
clusion10.) This result shows that the situation which was found by Wight­
man and Schweber13 in a special non-relativistic example is typical of 
relativistic theories of interaction which satisfy the canonical commutation 
relations (if such exist at all): For each different value of the coupling con­
stant one must use an inequivalent representation of the commutation rela­
tions (assuming that different values of the coupling constant will give rise 
to some difference in the vacuum expectation values F(w) for n = 1, 2, 3, 4.) 
Of course, the converse is not true; inequivalent representations of the com­
mutation relations need not always give rise to physically distinct theories.

From both the aesthetic and physical point of view, the version of the 
generalized Haag’s theorem proved here is somewhat deficient because it 
only asserts the equality of the first four vacuum expectation values. It seems 
physically plausible that two theories in which the two-particle propagator, 
the vertex part, and the two-particle scattering for all energies are identical 
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(as they must be if the first four vacuum expectation values arc identical) 
should be completely identical. On this basis, one would conjecture the 
aesthetically more satisfying result that all vacuum expectation values coin­
cide, which would (from the work of I Section 5) indeed imply the physical 
equivalence of the two theories. To prove this result along the lines of the 
present paper would require one to establish a unique analytic continuation 
out of the equal time-manifold Tn into S)iM; it would require an analysis 
going essentially beyond what we have presented in Section 1. (In fact, it 
is not difficult to see that under the hypothesis of Section 1, the analytic 
continuation is not unique for n > 4.)

A second matter which the present paper leaves untouched is the question 
of the existence of theories which use representations of the commutation 
relations different from those of a free field. If it turns out that no such repre­
sentation gives rise to a relativistically invariant theory which is physically 
interesting, that would be very strong evidence of the incompatibility of the 
canonical commutation relations, relativistic invariance and interaction. In 
fact, it would show that the fact that a field strength renormalization con­
stant is infinite in quantum electrodynamics14 is not a special consequence 
of the Hamiltonian of the theory, but a general result arising from relativistic 
invariance.
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